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SUMMARY 
Nine finite difference schemes using primitive variables on various grid arrangements were systematically 
tested on a benchmark problem of two-dimensional incompressible Navier-Stokes flows. The chosen 
problem is similar to the classical lid-driven cavity flow, but has a known exact solution. Also, it offers the 
reader an opportunity to thoroughly evaluate accuracies of various conceptual grid arrangements. 

Compared to the exact solution, the non-staggered grid scheme with higher-order accuracy was found to 
yield an accuracy significantly better than others. In terms of ‘overall performance’, the so-called 4/1 
staggered grid scheme proved to be the best. The simplicity of this scheme is the primary benefit. 
Furthermore, the scheme can be changed into a non-staggered grid if the pressure is replaced by the pressure 
gradient as a field variable. 

Finally, the conventional staggered grid scheme developed by Harlow and Welch also yields relatively high 
accuracy and demonstrates satisfactory overall performance. 

KEY WORDS Navier-Stokes Staggered grid Primitive variable formulation 

1. INTRODUCTION 

Two types of grid layout can be applied to the primitive variable finite difference method that 
solves incompressible Navier-Stokes flows-staggered grids’ - 4  and non-staggered  grid^.^.^ In 
finite element terminology, staggered grids are similar to mixed-order interpolation functions;798 
non-staggered grids resemble same-order interpolation functions.’ 

While a non-staggered grid appears simple and natural, it leads to algebraic systems with 
singular coefficient matrices that contain too many zero eigenvalues. Consequently, the resulting 
pressure solution is contaminated with pressure modes and is grossly erroneous. To avoid this 
problem, researchers began adopting staggered grids in which the nodal velocity components and 
the pressure are placed in different locations. For flows with small convection, the staggered grid 
solution also appears to be more accurate than the non-staggered grid result. 

The computer programming for staggered grids appears to be more complex than for non- 
staggered grids because each velocity component requires different indexing. Furthermore, the 
computation of the convection terms, a(uv)/ax or d(uv)/ay, may become inaccurate for large 
Reynolds numbers because the velocity components are staggered. It may be worthwhile to 
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reconsider the use of non-staggered grids, unless the accuracy and convergence rate of numerical 
schemes using staggered grids prove to be significantly better, or unless the pressure solution is of 
primary interest. 

The objectives of this paper are: (1) to use nine numerical schemes (five staggered grids and four 
non-staggered grids) to solve a benchmark problem, and to compare the computed and exact 
solutions; (2) to identify the shortcomings and merits of each scheme; and (3) to recommend a 
scheme, based on the accuracy and the overall performance. 

A well known benchmark problem is the lid-driven cavity flow originated by Burggraf." Some 
researchers, including the authors of this paper, are unsure of the singularity at the two corners 
where the moving lid remains in contact with the stationary walls. They have found that 
specification of the velocity of either unity or zero at the two corners alters the numerical result. 

Furthermore, it is difficult to compare the details of nodal values precisely, because the 
benchmark solution generally is presented in graphic form. Even if a tabulated benchmark 
solution is available, transferring i t  into the computer program to compute the global errors 
would prove laborious. 

Therefore we propose a benchmark problem similar to the classical lid-driven cavity flow. The 
flow velocity at the two corners is now zero; the flow is driven by a specified body force (as 
described in the next section) in addition to a non-uniform shear. Most importantly, the exact 
solution to this problem exists and is known. 

2. CONTINUUM EQUATIONS GOVERNING THE BENCHMARK PROBLEM 

Illustrated in Figure 1, the recirculating cavity flow driven by combined shear and body forces is 
governed by 

v * u = o ,  

Y 

I, 
X 

Figure 1. System schematic of the benchmark problem 
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and 

1 JP 
Re OY 

u . V u = - V 2 v - ~ - B ( x ,  y ,Re ) .  (3) 

The boundary conditions for the velocities u and u are of Dirichlet type: zero everywhere except 
along the top surface where 

U ( X ,  1)= 16(x4-2x3+x2) .  (4) 
Equation (4)  also indicates that u(0, 1)=0 and u(1, 1)=0, which eliminates the ambiguity of 
specifying the top corner velocities as in the classical lid-driven flow problem. 

A body force is present in the y-direction and is prescribed as 

where 

J ( ~ ) =  x4 - 2x3 + x 2 ,  

9 (Y)=Y4-Y2,  
F(x )=  ~ f ( ~ ) d x = 0 ~ 2 x ~ - - 0 5 ~ ~ + ~ ~ / 3 ,  

F, ( x )  = f ( x ) f ” ( x )  - [ f ‘ ( x ) I 2  = - 4x6 + 1 2x5 - 14x4 + 8x3 - 2x2, 

F 2 W  = J f ( x ) f ’ ( x )  dx = 0*5Cf (x ) l2 ,  
G 1 ( Y )  = g(y)g”’(y)  - g’(y)g’’( Y )  = - 24Y + 8Y - 4Y 

and the primes on f ( x )  and g ( y )  denote the differentiation with respect to x and y respectively. 
The exact solution to this combined shear- and body-force-driven cavity flow exists and is 

known to be 

U ( X ,  y) = 8f (x )g ’ (y )  = 8(x4 - 2x3 + x2)(4y3 -2y) ,  

U ( X ,  y) = - 8 f ’ ( x ) g ( y )  = - 8(4x3 - 6x2 + 2x)(y4  - y 2 )  

( 6 4  

(6b) 
and 

For convenience, the exact solution of u(x, y), u(x, y )  and dp/dy for Re= 1 is displayed in Table I 
corresponding to the physical location in the flow field. The corresponding streamlines are plotted 
in Figure 2. It is observed that, qualitatively, the clockwise circulation is similar to the classical lid- 
driven recirculating flow. 

An additional inconvenience of the present benchmark problem is the need to include the 
lengthy source term expression in the u-momentum equation. Readers who intend to solve the 
benchmark problem may ensure the correctness of the expression in their computer programs by 
ensuring that B ( 0 5 , 0 5 ,  1) = - 3.356250. 

3. NUMERICAL SCHEMES EXAMINED 

Nine primitive variable schems are used to solve the benchmark problem. Scheme(b) is a 
modification of scheme (a), and scheme (e) is a modification of scheme (d); most other schemes 
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”.- .-A 

Figure 2. Streamlines of the flow 

have been frequently or occasionally used by other researchers. Their grid arrangements for a 2D 
square computational domain will be described and ate shown graphically in Figure3. The 
symbol m/n is used in the names of these schemes, where rn is the number of u or u unknowns in a 
square cell and n designates the number of p unknowns. The control volumes for mass 
conservation and u-momentum conservation are the squares that are shaded diagonally and 
horizontally respectively. In Figures 3(a) and 3(b) the control volumes for u-momentum 
conservation enclose nodes for u. 

(a)  2/1 staggered grid (Harlow and Welch’) 

In Figure 3(a) p is located at the centre of the square element. Due to grid staggering u is located 
a half grid from the top surface and the bottom wall, suggesting that a special treatment is required 
to compute us that are adjacent to the top and bottom boundaries. One way is to extrapolate u,, u,, 
and u, to obtain ui, which is located beyond the computational domain. A similar situation arises 
for the us. 
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CONTROL VOLUME 
FOR MOMENTUM BALANCE 

(9) 0 STANDS FOR u, v, AND p 

Figure 3. Grid arrangement for nine various.primitive variable schemes, which are identified by m/n where m is the number 
of u or o unknowns in the square cell and n is that of p unknowns. (a) 2/1 staggered grid. (b) 2/4 staggered grid. (c) 4/1 
staggered grid; 4 denotes u or u. (d) 4/5 staggered grid; 4 denotes u or u. (e) 5/4 staggered grid; I$ denotes u or u. (f) 4/4 non- 
staggered grid with the continuity equation used to compute the boundary pressure; t,?~ denotes u, u or p.  (g)4/4 non- 

staggered grid with the momentum equation used to compute the boundary pressure; 4 denotes u, u or p 

(h) 214 staggered grid (modification of (a ) )  

In Figure 3(b) p is located at the grid node; u is located a half grid interval from the left and right 
walls; and u is located a half grid interval from the bottom and top walls. While the modification 
appears almost trivial, it makes extrapolation unnecessary because the us and us adjacent to the 
vertical boundary (such as u, , ub and u,) can be computed directly from the continuity equation. 
Thus it is not necessary to compute the boundary pressure either. 

(c) 411 staggered grid 

square element."-" The velocity components u and L: are located at the same positions. 
Figure 3(c) shows a partially staggered grid with only the presssure staggered to the centre ofthe 

( d )  415 staggered grid 

Figure 3(d) results from superimposing Figures 3(a) and 3(b).' Therefore the computational 
domain will be covered twice if all the control volumes for the mass conservation are drawn. Now 
all us and us are located at the same positions. 

(e) 514 staggered grid (modification of ( d ) )  

are located at the midpoint of the four sides of the element. 
In Figure 3(e) the us and us are located at the four corners and at the centre of the element; the ps 

(f) 414 non-staggered grid (with the continuity equution applied on the boundary to compute p there) 
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In Figure 3(f) all us, us and ps are located at the grid points."' The velocities and pressures on 
the face of the control volume are taken to be the average of the two adjacent nodal unknowns. 
For example, u, is ( u ( i - l , j ) + u ( i , j ) ) / 2  and p ,  is ( p ( i - l , j ) + p ( i ,  j ) ) / 2 .  

I n  this formulation the pressure on the boundary ( e g  Pa) is computed by balancing the mass 
over the rectangular control volume, half the size of the regular control volume. 

(9) 414 non-staggered grid (with the momentum equation applied on the boundary to  compute p there) 

This formulation is the same as that in ( f )  except that now the pressure on the boundary is 
computed by balancing the momentum over the rectangular control v o l ~ m e . ~  This should 
enhance the link between two adjacent nodal pressures. 

(h)  414 non-staggered grid (pressure Poisson equation)'* 9*20 

In this formulation the pressure is computed by using the pressure Poisson equation 

v ' p = ~ - v z ( ; ~ + ; )  - , ( u ' v u ) - - ( u ' v u )  a a 
Re ox aY 

(7) 

instead of using the continuity equation as in schemes ( f )  and (g). However, to ensure a divergence- 
free solution, we need to use the continuity equation, not the momentum equation, to compute p 
on the boundary. This remark is explained further in Section 5. 

( i )  414 non-staggered grid (higher-order formulation) 

In schemes ( f )  and (g) the accuracy may be lowered and spurious numerical oscillation may be 
generated when the velocities and pressures on the face of the control volume are approximated by 
the average values of the two adjacent nodal unknowns. The accuracy may be increased and the 
oscillation problem may be eliminated if the first derivatives &/ax, dulay, dpjdx and dp/ay are 
treated as additional unknowns, and if additional equations are derived to compute these 
variables. These additional equations, according to the 'Pade' formulation, are 

3 
h mi-1+4mi+mi+1= -(4i+, -4i-l), 

where 4 denotes u, u or p ,  and m denotes their respective derivatives. The boundary condition of m 
is approximated by a five-point one-sided relation as 

1 
12h 

V I ,  = .- ( - 2 5 4 ,  +484, - 3643 + 1644- 345)+ O(h4). 

4. NUMERICAL PROCEDURES AND NUMERICAL SOLlJTIONS 

To conduct a fair comparison of various grid networks, we adopt a series of conventional 
procedures for our computations: (a) Gauss-Seidel point-by-point iterative method; (b) central 
finite difference; (c) under-relaxation; and (d) a modified penalty function method to solve for p,  
which is described as follows. 

The continuity equation is modified into 

i p  + (1  - 1.) V u = 0 
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(8b) 
1-1 
1 

The procedure starts from I = 1 when the pressure is zero throughout the flow field. Gradually, i. 
is reduced from 1 to, say, 0.5. The solution at I.= 1 is used as the starting guess for that at i = 0 5  
The procedure is repeated successively for 1=0.1, 0~05,0~01,0~005,0~001, 0~0005,00001,0~oooO5 
and O~oooO1. At i = O.oooO1, V - u becomes very small, but p remains finite and is the true numerical 
solution to the Navier-Stokes equation. Note that this scheme also is similar to the false transient 
method initiated by Chorin,21 because p is artificially introduced into the continuity equation. 
However, unlike the false transient scheme, the present scheme can solve true transient problems 
also, because the variable is 1, not t.” 

p = - - - - v . u  

All of the schemes are programmed along the following logical path. 

Specify data such as Re, h and the convergence criteria; define the functions f ( x ) ,  g(y) ,  etc.; 
and compute the body force B(x,  y ,  Re). 
Specify the velocity boundary condition. In particular, the flow on the top surface is driven 
according to equation (4) .  An outer DO loop for the Gauss-Seidel iteration starts here. 
Compute interior us (by an inner DO loop). 
Compute interior us (by an inner DO loop). For non-staggered grids u and u can be 
conveniently computed in a single DO loop because the same indices i and j are applicable 
to both u(i, j) and u ( i , j ) .  
Compute p boundary conditions using equation (8b). This step is not needed for staggered 
grid schemes (a), (b), (c), (d) and (e). For scheme (g) the momentum equation (applied to the 
boundary normal to the velocity component) is used. 
Compute interior ps (by an inner DO loop). The outer DO loop for the Gauss-Seidel 
iteration ends here. If the solution has converged, go to (7); if not, go back to (3). 
Print the output. 

The computer programs of all the schemes are validated by the following debugging 
procedure.23 First, we create a simple fictitious problem. The governing equations are 

v . u = o ,  (9) 

u . V u =  --V2u- 1 - dP + g l ( x ,  y ,  Re)  
Re ax 

and 

1 aP 
Re dY 

u - Vv = - V2u - + g2(x ,  y, Re), 

where 

g , ( x ,  y ,  R e ) = 4 x 3 y 2 + 2 x y 2 - 4 y / R e  

and 

g2(x ,  y ,  Re)  = 4x2y3 + 2x2y  + 4x/Re.  

The exact solution to equations (9)-(11) exists and is known to be 

u(x, y )  = 2x2y, u(x, y )  = - 2xy2, p ( x ,  y )  = x2y2 
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if the boundary conditions of u and u are prescribed as 

u(1, y)=2y, u(x,  1)=2x’, u(1, y)= -2y2 ,  u(x ,  I ) =  -2x 

and zero elsewhere. 
We then use all the schemes to solve this problem first. If the program is free of programming 

errors, the numerical solution should be identical to the exact solution given in equation (1 2), 
because the central finite difference approximation is exempt from truncation errors for second- 
degree polynomials. After the identity is observed, we simply delete g,(x, y, Re),replace g2(x, y, Re) 
with - B ( x ,  y, Re) and change the boundary condition to equation (4). 

All the computations are performed on a VAX-785 mainframe with h = 005 (n = 20). 
In Table I1 the shortcomings of the nine schemes are summarized. They are discussed further in 

Table I11 shows the standard deviation of the nodal variables with respect to the exact solution, 

summation of all [4(i,j)-4.xact(x, y)]’ 
number of all nodal 4s 

the next section. 

defined as 

(13) 

where 4 stands for u, u or ap /ay .  I t  is unfair to compare p, because p is oscillatory in schemes (c), (d), 

”’ -1 ’ 

-~ e*= [ 
(el, ( f )  and (9. 

5. DISCUSSION 

Computations are performed for Re = 1 and 10. At Re = 10 more severe under-relaxation is needed 
generally to obtain convergent solutions for these central finite different schemes. For flows with 

Table 11. Shortcomings of the nine schemes. Y, N and N/A denote ‘yes’, ‘no’ and ‘not applicable’ respectively 

Scheme 

Set of algebraic equations may be inconsistent N N Y N N N Y N N 
p is oscillatory N N Y Y Y Y N N Y  
Sometimes even pressure gradients are oscillatory N N N N N Y N N N 
Computation of p boundary condition is needed N N N Y N Y Y Y Y 
Indexing in the computer program is relatively Y Y N Y Y N N N N 
cumbersome 
Extrapolation for fictitious velocity components is Y N N Y N N N N N 
needed 
Averaging of u or v for convection term is needed Y Y N N N N N N N 
Pressuregradients willinvolveusor usbeyond the N N N Y N Y Y N/A N 
nine-point stencil 
CPU time per iteration is relatively large N N N Y Y N N N Y  
Mass conservation is generally poor N N N Y Y N Y Y Y  
Accuracy of pressure gradients is relatively low N Y N N Y N N N N 
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Table 111. Standard deviation of the nodal u, u and dpldy with respect to the exact solution 
(n = 20) 

Numerical scheme e" e" ePY 

(a) 
2/1 staggered 

(b) 
214 staggered 

(c) 
411 staggered 
(4 
4/5 staggered 
(4 
5/4 staggered 

( f )  
414 non-staggered (C) 

(g) 
414 non-staggered (M) 

(h) 
4/4 non-staggered (PP) 

(0 
414 non-staggered (HO) 

Re= 1 
Re= 10 

Re= 1 
Re= 10 
Re=  1 
Re= 10 

Re= 1 
Re= 10 
Re= 1 
Re= 10 

Re=  1 
R e =  10 

R e = l  
Re= 10 

Re= 1 
Re= 10 

Re= 1 
Re= 10 

0~000777 
0000780 

OW0849 
0.00621 8 

0001 373 
0.001391 

0.000777 
000078 1 

0~000550 
0.000905 

0002626 
0002640 

0.002820 
Oa028 3 3 

0003659 
0.003697 

0.000141 
0000114 

0000730 
0000731 

0000975 
0007774 

0.001769 
0001788 

0000731 
0000740 

000078 1 
0000851 

0.003044 
0003066 

0003236 
0003257 

0000695 
0001 196 

0oooO8 1 
0.000109 

0086742 
00101 22 

0250820 
0246650 

0206944 
0020724 

0.086660 
0009595 

2.697950 
0.285976 

034 1469 
0.035 149 

0.280579 
0029399 

0183157 
0019960 

0031432 
0003035 

Re> 10 it becomes more difficult for the central finite difference solution to converge, and, if 
convergent at all, the solution appears grossly inaccurate. 

Below, we attempt to identify the merits and shortcomings of each scheme. 

(a) 2/1 staggered grid 

This scheme may be the most widely used, possibly because the pressure solution is non- 
oscillatory. The velocity components are located exactly on the faces of the control volume for the 
mass conservation; therefore the only linear combination of the discretized continuity equations 
such that all the interior us and U S  vanish is to add up all the continuity equations. The singularity 
of the resulting coefficient matrix (which has only one zero eigenvalue) corresponds to the so- 
called hydrostatic pressure mode and leads to an arbitrary, yet unharmful, constant in the pressure 
solution. 

However, three shortcomings have been identified. 

(1) The nodal velocities do not lie entirely on the boundary of the computational domain. This 
suggests that, for computing velocities adjacent to the top and bottom surfaces, some 
extrapolation may be needed to first compute imaginary nodal us located beyond the 
computational domain. The accuracy may be lowered if too few nodes are used in the 
extrapolation. Conversely, too many nodes may reduce the convergence rate. A similar 
situation arises for the us. 
Since the us and us are staggered at different locations, we must assume that either the u 
value (when computing u)  or the u value (when computing u) in the convection term d(uu)/dx 
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or a(uu)/dy is the average of its neighbouring four values. This averaging process may lower 
the accuracy significantly when the velocity gradients are large. 

(3) The computer programming involves different indexing for u, u and p. 

(b) 2/4 staggered grid (slight modijcation of (a) )  

As in (a), the strong merit of this scheme is the non-oscillatory pressure. The major difference 
between (a) and (b) is that the us are staggered from the top and bottom boundaries in (a) and from 
the left and right in (b). A similar situation occurs for the us. 

This slight modification is important because now the us adjacent to the vertical boundaries 
(and similarly the us adjacent to the horizontal boundaries) can be computed directly from the 
continuity equation. Furthermore, extrapolation is no longer needed because the us are located on 
the top and bottom boundaries (and the us are located on the left and right boundaries). 

The second and third shortcomings of scheme (a) apply to this scheme also. 

(c) 4/1 staggered grid 

On this grid, computation of the pressure boundary condition is not needed because no 
pressure is located on the boundary. Furthermore, while it appears to be staggered, the grid can be 
readily changed into a non-staggered one. 

Consider the mass balance over element ‘ne’ shown in Figure 4. According to equation (8b), we 
write 

IS, 

Figure 4. A grid showing the velocity components involved in the expression of the pressure gradient 
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Similar expressions can be written for pnw, psw and psc also. Consequently, 

which is the finite difference discretization form of 

Equation (15) reveals that the pressure gradient in this formulation can be expressed in terms of 
u and u at the nine grid points in the immediate vicinity of grid point C. This compactness cannot 
be achieved by other non-staggered grid formulations. For example, we can show that the pressure 
gradient for the 414 non-staggered grid is 

which inevitably involves WW, SS, EE and NN grid points (when (dplay), is also written). 
Therefore we see that p can be completely disregarded throughout the 4/1 scheme. At every grid 

node 4 now stands for u, u, +/ax and ap/ay. For 3D problems the unknowns will be u, u, w, ap/ax, 
a*p/ay and apldz. Added to the fact that no pressure boundary condition is needed, such a 
treatment greatly simplifies the computer programming and makes the 4/1 scheme quite 
attractive. Details of this treatment are described e l ~ e w h e r e . ’ ~ . ~ ~  

For most of the incompressible flow problems it is safe to assert that the discretization by the 4/1 
scheme generally leads to a set of consistent algebraic equations. However, the set is slightly 
inconsistent for the present benchmark problem. For example, if we add up all the continuity 
equations that govern the circled ps shown in Figure 3(c) (n  =4), the resulting algebraic equation 
becomes, according to equation (4), 

O*~(U, - u , ) + O . ~ ( U ,  -~,)=0*5(0*56256-0)+05(0.56256- 1)=0*06256, 

which should be zero if the algebraic system is consistent. Fortunately, this shortcoming does not 
appear to be serious because the inconsistent quantity will diminish as n increases (For example, it 
diminishes to 0.00012 for n = 32). 

When an iterative matrix solver is used, the solution can be considered as ‘converged’ when the 
residuals of all the discretized continuity equations become less than a non-zero (but small) 
constant. 

When the algebraic system is consistent, the coefficient matrix of this scheme contains two zero 
eigenvalues, one associated with the hydrostatic pressure mode and the other with the checker- 
board pressure mode.’ ’ Consequently, the pressure is oscillatory. However, this scheme has 
proved to be quite attractive despite these two shortcomings (see Table 11). 

(d )  415 staggered grid 

term is discretized, there is no need to take averages as required by schemes (a) and (b). 
As in scheme (c), all us and us are located at the same grid points. Therefore, when the convection 
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The diffusion term Vz$ should be expressed in terms of the unknowns at the four corners of the 
control volume for the momentum balance. Referring to figure 3(d), we write 

instead of 

The computational domain will be covered twice if we draw all the control volumes for the mass 
balance, which suggests that two sets of the pressure solution are nearly unrelated. One set consists 
of ps located at the centre of each cell, and the other consists of ps  located at the grid points. 

As expected, programming of this scheme is relatively tedious, because each field variable needs 
two indexing systems. 

(e) 514 staggered grid 

This scheme is a slight modification of scheme (d). Two sets of pressure solutions also exist that 
are nearly unrelated. One set consists of ps located on vertical grid lines, and the other set consists 
of ps located on horizontal grid lines. 

(f) 414 non-staggered grid (with the continuity equation applied on the boundary to compute p there) 

We have found that, if the velocity components do not lie exactly on the face of the mass 
conservation control volume, multiple zero eigenvalues of the resulting coeficient matrix 
generally will exist. 

In Figure 5, the velocity components do not lie at points w, s, e and n. Therefore u, may be 
approximated by 

u, = a @ ,  + u s ) +  b(u, + u,+ u I ,  + u,,) ,  

13 14 15 16 

I 2 3 4 

Figure 5. A 4/4 non-staggered grid 
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where a and b are weighting factors whose values depend on the scheme adopted (e.g. for schemes 
( f )  and (g), a = f  and b=O; for the Galerkin finite element method with bilinear velocity and 
bilinear pressure square elements, a = and b = &). 

The mass conservation over the control volume surrounding grid point 7 can be represented by 

u, - u, + u, - us =o 
or 

Similarly, we can write the discretized equations at grid points 5, 13 and 15. When these equations 
are added up, we find that all the coefficients for the interior unknowns become zero; i.e. 

a ( U 8  - Ug + 01 1 - U3) + b(U, 2 -U10 + U4 - U2 + U12 -04 + U1o - U 2 ) = 0 .  

0 x u6 +O x u l 0  +O x u l 0  +O x u ,  =boundary terms, 

which indicates that a zero eigenvalue is associated with such a linear combination of the 
discretized equations. 

Discretization on the non-staggered 4/4 grid leads to oscillatory and erroneous pressure 
solutions. Sometimes this undesirable behaviour also manifests itself in the pressure gradient. As a 
simple example, we compute the classical lid-driven Stokes flow (Re=O)  with the 4/4 scheme, and 
present the numerical results (h=0*1) in Table IV. The validity of this solution can be readily 
checked by substituting the data point-by-point into the finite difference equation. For example, at 
i = 3 and j =  3 (for u or u, i or j varies from 1 to 1 1; for apldy, i or j varies from 2 to 10) 

and 
UE - UW + U N  .-US = - 00396 - 0 + 00396 - 0 = 0 

1 a P  
h2 dy 
- - (OW + US + U E  + U N  - 4 ~ , j )  - - = (0.025 1 + 0 + 00269 + 00396 

- 4  x 0.0301)/0*01-(-2.8828)=0. 

We see from Table IV that the pressure gradient dp /dy  oscillates at least in the y-direction. I t  is 
believed that this behaviour is attributed to the inaccuracy of the scheme and may be unrelated to 
the contamination by pressure modes. 

In this scheme it is inconvenient to replace the pressure with the pressure gradient as the field 
variable, because velocities beyond the nine-point stencil must be included in the expressions of 
the pressure gradient, as shown in equation (17). 

(9) 414 non-staggered grid (with the momentum equation applied on the boundary t o  compute p there) 

It is possible to eliminate the spurious oscillation in p by applying the momentum equation to 
compute the pressure boundary condition. By doing so, pa and P b  in Figure 3(g) are directly linked 
in one equation such as 

The major drawback of this scheme is that the mass conservation is poorly satisfied. In other 
words, the mass flow rates c" 
(h) 414 non-staggered grid (pressure Poisson equation) 

Use of the pressure Poisson equation instead of the continuity equation has been accepted by 
CFD researchers for decades. However, we should note that the boundary condition of the 

u(i, j )  at each i are different from one another. 
j:2 
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pressure Poisson equation must be prescribed with great care to ensure the divergence-free 
condition. If the pressure boundary condition is obtained from the momentum equation, it is 
possible that the compressibility constraint will be violated. A simple illustration concerns a 
Stokes Row whose exact solution exists and is known to be 

Such a Row is governed by 

and 
v2u - v p  = 0 

v 2 p  = 0. 

However, the solution violates the compressibility constraint because it can be readily shown that 

v ’ u = x2 - y 2  # 0. 

A comprehensive discussion on proper specification of the correct pressure boundary condition 
for the pressure Poisson equation is given by Gresho and Sani.’’ 

(i) 414 non-staggered grid (higher-order formulation) 

In this scheme the field variables are u, u, p, du/ax, dv/ay,  apldx and apldy.  For 3D Rows the field 
variables become U ,  U, W, p ,  dulax, av/dy,  dw/dz, dp /dx ,  d p / a y  and ap /az .  Clearly, a large computer 
storage capacity is needed in this scheme. However, the accuracy of the numerical solution is 
impressively high, as can be seen in ‘Table 111. 

The shortcomings of the nine schemes are summarized in Table 11. We favour scheme (c) 
because it has the least shortcomings. 

Table 111 presents the standard deviations of u, u and ap /ay  with respect to the exact solution for 
Re = 1 and Re = 10. Upwind difference is intentionally disregarded. If it had been used, inaccuracy 
associated with the artificial diffusion, added to that associated with the grid staggering, would 
have been introduced, making the assessment of the latter more difficult. Also, the difference 
between the conservative form and the non-conservative form is overlooked because the 
magnitude of convection considered here is small. These two latter subjects are reported 
elsewhere. 

We observe the following facts from Table 111: 

(1) The accuracy of the staggered grid and non-staggered grid solutions appears to be 
comparable, except in schemes (a), (d) and (i). 

(2) The accuracy of u and u at Re= 1 is uniformly higher than that at Re= 10. This trend is 
expected because the discretization of larger convection terms produces larger truncation 
errors. 

(3) Scheme (i) is particularly accurate. We see that the standard deviations of its solution are 
one order of magnitude lower than those generated by other schemes. Even the solution at 
Re = 1 computed on a 10 x 10 grid yields e, = 04005 1 8, e, = 0.000524 and epy = 0.080582, 
which are more accurate than the results computed on a 20 x 20 grid by any of the other 
eight schemes. 

(4) The accuracy of scheme (a) is very close to that of scheme (d), because scheme (d) is the 
superposition of (a) and (c), and only the nodal points used in scheme (a) are considered in 
calculating the standard deviations. 

( 5 )  The accuracies of schemes (a) and (d) rank second. 
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6. CONCLUDING REMARKS 

A test problem, whose exact solution exists and is known, has been designed to systematically 
assess the accuracy and overall performance of nine finite difference schemes. Based on Tables I1 
and 111, we can make the following conclusions. 

(a) Scheme (i) is significantly more accurate than the others if the comparison is restricted to the 
presented benchmark problem. In other words, the effect of grid staggering on the accuracy 
of the numerical solution is insignificant if the first derivatives au/ax, dv/ay, ap/ax and ap/ay 
are computed by a scheme of higher-order accuracy instead of by the central finite difference 
method. 

(b) If accuracy is not a major concern, the 4/1 staggered grid formulation appears attractive 
because of its simplicity. This scheme can be readily changed into a non-staggered grid 
scheme, and no pressure boundary condition is needed. 

(c) The classical 2/1 staggered grid formulation of Harlow and Welch may be modified slightly 
to avoid extrapolations for the fictitious velocity components outside the boundary. The 
modification, however, leads to less accurate solutions. 
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